Sudden Changes in Ocean Currents Warmed Arctic, Cooled Antarctic in Past

Sudden cooling occurred in the Antarctic but millions of years earlier, a second study has found. Approximately 34 million years ago, a major reorganization of ocean currents in the Southern Ocean resulted in Antarctic seawater temperatures abruptly falling by as much as 5 degrees Celsius (9 degrees Fahrenheit). The temperature drop initiated growth of the Antarctic ice sheet, at the same time that the earth underwent a drastic transition from warm Greenhouse to cold Icehouse conditions.
This dramatic cooling was caused by tectonic events that opened up two underwater gateways around Antarctica, the international team of researchers says. The gateways are the Tasmanian Gateway, formerly a land bridge between Antarctica and Tasmania, and Drake Passage, once a land bridge from Antarctica to South America. The scientists studied the effect of tectonics using a high-resolution ocean model that includes details such as ocean eddies and small-scale seafloor roughness.
After tectonic forces caused the two land bridges to submerge, the present-day ACC (Antarctic Circumpolar Current) began to flow. This circumpolar current, although initially less strong than today, acted to weaken the flow of warm waters to the Antarctic coast. As the two gateways slowly deepened, the warm-water flow weakened even further, causing the relatively sudden cooling event.
Little cooling occurred before one or both gateways subsided to a depth of more than 300 meters (1,000 feet). After the second gateway had subsided from 300 meters (1,000 feet) to 600 meters (2,000 feet), surface waters along the entire Antarctic coast cooled by 2 to 3.5 degrees Celsius (3.6 to 6.3 degrees Fahrenheit). And once the second gateway had subsided below 600 meters (2,000 feet), the temperature of Antarctic coastal waters decreased another 0.5 to 2 degrees Celsius (0.9 to 3.6 degrees Fahrenheit). The next figure depicts the gradual opening of the two gateways.

Source link

Leave a Reply

Your email address will not be published.